Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
BMC Ophthalmol ; 24(1): 179, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641836

RESUMO

BACKGROUND: Plusoptix photoscreeners are capable of measuring refractive errors of children from 1 meter distance, without cyloplegia. We aimed to compare refractive data obtained from the newest version of Plusoptix (model 12) with cycloplegic autorefraction. METHODS: We examined 111 consecutive children aged 3-7 years first by Plusoptix A12C under manifest condition and subsequently for cycloplegic refraction by Topcon KR-1 tabletop autorefractometer. Sphere, spherical equivalent, cylinder and axis of astigmatism measured by the two methods were analyzed to determine correlation, agreement and differences. RESULTS: Binocular examination of 111 children aged 4.86±1.27 years revealed good agreement between refractive data obtained by Plusoptix and cycloautorefraction, according to Bland-Altman plots. Significant (p < 0.001) and strong correlation was found between all refractive measurements (Pearson's r value of 0.707 for sphere, 0.756 for pherical equivalent, and 0.863 for cylinder). Plusoptix mean sphere, spherical equivalent and cylinder were 1.22, 0.56, and -1.32 D, respectively. Corresponding values for cycloautorefraction were 1.63, 1.00, and -1.26 D. The difference between axis of cylinder measured by the two methods was < 10° in 144 eyes (64.9%). CONCLUSIONS: Considering the significant agreement and correlation between Plusoptix photoscreener and cycloplegic autorefraction, the need for cycloplegic drops in refractive examination of children may be obviated. The mean difference between cylinder measurements are considerably trivial (0.06 D), but sphere is approximately 0.4 D underestimated by Plusoptix compared to cycloautorefraction, on average.


Assuntos
Astigmatismo , Erros de Refração , Seleção Visual , Criança , Humanos , Midriáticos , Seleção Visual/métodos , Erros de Refração/diagnóstico , Refração Ocular
2.
J Pediatr Ophthalmol Strabismus ; : 1-8, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661310

RESUMO

PURPOSE: To analyze referral rates, patient demographics, referral indications, and the impact of socioeconomic factors on ocular health from the University of California Irvine (UCI) Eye Mobile for Children, particularly during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: A retrospective chart review was performed on de-identified records of children examined on the UCI Eye Mobile. GraphPad Prism 10.0.0 and Python software were used for statistical analyses. RESULTS: In the academic years from 2018 to 2022, 3,619 children received comprehensive eye examinations on the UCI Eye Mobile. Among them, 76 were referred to a pediatric ophthalmologist. The majority of these children were Hispanic (72.6%, 54 of 74), followed by Asian (10.9%, 8 of 74). A significant proportion (82.9%, 63 of 76) attended school districts with median incomes below that of Orange County. Statistically significant differences were found in age (P = .001; pre-COVID: 3.98 ± 1.08 years vs COVID: 5.75 ± 2.92 years) and gender (P = .023; pre-COVID female: 31 of 41 vs COVID female: 15 of 32) between the pre-COVID and COVID years. Additionally, there were significant differences in the proportion of children with hyperopia with astigmatism between the pre-COVID and COVID years (P = .044; pre-COVID: 23 of 40 vs COVID: 12 of 35). The most common indications for ophthalmologist referrals were for strabismus evaluation/treatment (28.9%, 22 of 76), followed by abnormal cup-to-disc ratio (21.1%, 16 of 76). CONCLUSIONS: The study highlights the pivotal role of the UCI Eye Mobile for children in identifying ocular conditions needing referrals to subspecialty care. The majority of children needing these referrals attended schools in lower economic communities. Additionally, the COVID-19 pandemic appears to have influenced the demographic and clinical characteristics. [J Pediatr Ophthalmol Strabismus. 20XX:X(X):XXX-XXX.].

4.
J. optom. (Internet) ; 17(1)Jan.-March. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-229117

RESUMO

Introduction A periodical self-monitoring of spherical refraction using smartphones may potentially allow a quicker intervention by eye care professionals to reduce myopia progression. Unfortunately, at low levels of myopia, the far point (FP) can be located far away from the eye which can make interactions with the device difficult. To partially remedy this issue, a novel method is proposed and tested wherein the longitudinal chromatic aberration (LCA) of blue light is leveraged to optically bring the FP closer to the eye. Methods Firstly, LCA was obtained by measuring spherical refraction subjectively using blue pixels in stimuli shown on organic light-emitting diode (OLED) screens and also grey stimuli with matching luminance. Secondly, the visual acuity (VA) measured with a smartphone located at 1.0 m and 1.5 m and displaying blue optotypes was compared with that obtained clinically standard measurements. Finally, the spherical over refraction obtained in blue light with a smartphone was compared with clinical over-refraction with black and white (B&W) optotypes placed at 6 m. Results Mean LCA of blue OLED smartphone screens was −0.67 ± 0.11 D. No significant differences (p > 0.05) were found between the VA measured with blue optotypes on a smartphone screen and an eye chart. Mean difference between spherical over-refraction measured subjectively by experienced subjects with smartphones and the one obtained clinically was 0.08 ± 0.34 D. Conclusions Smartphones using blue light can be used as a tool to detect changes in visual acuity and spherical refraction and facilitate monitoring of myopia progression. (AU)


Assuntos
Acuidade Visual , Refratometria/instrumentação , Smartphone , Refração Ocular , Grades , Fotofobia , Testes de Percepção de Cores
5.
J Optom ; 17(1): 100494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37939574

RESUMO

INTRODUCTION: A periodical self-monitoring of spherical refraction using smartphones may potentially allow a quicker intervention by eye care professionals to reduce myopia progression. Unfortunately, at low levels of myopia, the far point (FP) can be located far away from the eye which can make interactions with the device difficult. To partially remedy this issue, a novel method is proposed and tested wherein the longitudinal chromatic aberration (LCA) of blue light is leveraged to optically bring the FP closer to the eye. METHODS: Firstly, LCA was obtained by measuring spherical refraction subjectively using blue pixels in stimuli shown on organic light-emitting diode (OLED) screens and also grey stimuli with matching luminance. Secondly, the visual acuity (VA) measured with a smartphone located at 1.0 m and 1.5 m and displaying blue optotypes was compared with that obtained clinically standard measurements. Finally, the spherical over refraction obtained in blue light with a smartphone was compared with clinical over-refraction with black and white (B&W) optotypes placed at 6 m. RESULTS: Mean LCA of blue OLED smartphone screens was -0.67 ± 0.11 D. No significant differences (p > 0.05) were found between the VA measured with blue optotypes on a smartphone screen and an eye chart. Mean difference between spherical over-refraction measured subjectively by experienced subjects with smartphones and the one obtained clinically was 0.08 ± 0.34 D. CONCLUSIONS: Smartphones using blue light can be used as a tool to detect changes in visual acuity and spherical refraction and facilitate monitoring of myopia progression.


Assuntos
Miopia , Smartphone , Humanos , Refração Ocular , Acuidade Visual , Miopia/diagnóstico
6.
J Pediatr Ophthalmol Strabismus ; : 1-4, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37882183

RESUMO

PURPOSE: To assess the responses of the ChatGPT-4, the forerunner artificial intelligence-based chatbot, to frequently asked questions regarding two common pediatric ophthalmologic disorders, amblyopia and childhood myopia. METHODS: Twenty-seven questions about amblyopia and 28 questions about childhood myopia were asked of the ChatGPT twice (totally 110 questions). The responses were evaluated by two pediatric ophthalmologists as acceptable, incomplete, or unacceptable. RESULTS: There was remarkable agreement (96.4%) between the two pediatric ophthalmologists on their assessment of the responses. Acceptable responses were provided by the ChatGPT to 93 of 110 (84.6%) questions in total (44 of 54 [81.5%] for amblyopia and 49 of 56 [87.5%] questions for childhood myopia). Seven of 54 (12.9%) responses to questions on amblyopia were graded as incomplete compared to 4 of 56 (7.1%) of questions on childhood myopia. The ChatGPT gave inappropriate responses to three questions about amblyopia (5.6%) and childhood myopia (5.4%). The most noticeable inappropriate responses were related to the definition of reverse amblyopia and the threshold of refractive error for prescription of spectacles to children with myopia. CONCLUSIONS: The ChatGPT has the potential to serve as an adjunct informational tool for pediatric ophthalmology patients and their caregivers by demonstrating a relatively good performance in answering 84.6% of the most frequently asked questions about amblyopia and childhood myopia. [J Pediatr Ophthalmol Strabismus. 20XX;X(X):XXX-XXX.].

7.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894785

RESUMO

Retinal hemorrhages in pediatric patients can be a diagnostic challenge for ophthalmologists. These hemorrhages can occur due to various underlying etiologies, including abusive head trauma, accidental trauma, and medical conditions. Accurate identification of the etiology is crucial for appropriate management and legal considerations. In recent years, deep learning techniques have shown promise in assisting healthcare professionals in making more accurate and timely diagnosis of a variety of disorders. We explore the potential of deep learning approaches for differentiating etiologies of pediatric retinal hemorrhages. Our study, which spanned multiple centers, analyzed 898 images, resulting in a final dataset of 597 retinal hemorrhage fundus photos categorized into medical (49.9%) and trauma (50.1%) etiologies. Deep learning models, specifically those based on ResNet and transformer architectures, were applied; FastViT-SA12, a hybrid transformer model, achieved the highest accuracy (90.55%) and area under the receiver operating characteristic curve (AUC) of 90.55%, while ResNet18 secured the highest sensitivity value (96.77%) on an independent test dataset. The study highlighted areas for optimization in artificial intelligence (AI) models specifically for pediatric retinal hemorrhages. While AI proves valuable in diagnosing these hemorrhages, the expertise of medical professionals remains irreplaceable. Collaborative efforts between AI specialists and pediatric ophthalmologists are crucial to fully harness AI's potential in diagnosing etiologies of pediatric retinal hemorrhages.


Assuntos
Aprendizado Profundo , Hemorragia Retiniana , Humanos , Criança , Hemorragia Retiniana/diagnóstico , Hemorragia Retiniana/etiologia , Inteligência Artificial , Curva ROC , Fundo de Olho
8.
J AAPOS ; 27(6): 374-376, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863176

RESUMO

Pyogenic granuloma, also known as lobular capillary hemangioma, is a benign vascular lesion that primarily affects the skin and mucous membranes. It is not pyogenic; nor is it granulomatous. It typically arises in response to local trauma or surgery, irritation, hormonal changes, or chronic inflammation, and it sometimes occurs spontaneously. The occurrence of pigmented pyogenic granuloma in the conjunctiva and cornea without any history of trauma or surgery is extremely rare, particularly in children. We report the clinical presentation, diagnostic evaluation, and successful management of bilateral biopsy-proven conjunctival and corneal pigmented isolated pyogenic granuloma in an 11-year-old girl. No signs of recurrence were seen at the 3-months follow-up.


Assuntos
Granuloma Piogênico , Criança , Feminino , Humanos , Granuloma Piogênico/diagnóstico , Granuloma Piogênico/cirurgia , Granuloma Piogênico/patologia , Pele/patologia , Córnea/patologia , Túnica Conjuntiva/patologia , Inflamação
9.
Ophthalmology ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37656087
10.
J AAPOS ; 27(5): 267.e1-267.e7, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37722620

RESUMO

PURPOSE: Neonatal retinal hemorrhage is a common finding in newborns, but the underlying mechanisms are not fully understood. A computational simulation was designed to study the events taking place in the eye and orbit when the head is compressed as the neonate passes through the birth canal. METHODS: A finite element model of the eye, optic nerve sheath, and orbit was simulated and subjected to forces mimicking rises in intracranial pressure (ICP) associated with maternal contractions during normal vaginal delivery. Resulting changes in intraocular pressure (IOP), pressure in the optic nerve sheath, and stress within the sclera and retina were measured. RESULTS: During contractions, increased ICP was transmitted to the orbit, globe, and optic nerve sheath. IOP rose by 2.71 kPa near the posterior pole. Pressure at the center of the optic nerve sheath rose by 7.31 kPa and up to 9.30 kPa at its interface with the sclera. Stress in the retina was highest near the optic disk and reached 10.93, 10.99, and 13.28 kPa in the preretinal, intraretinal, and subretinal layers, respectively. Stress in the sclera peaked at 12.76 kPa. CONCLUSIONS: Increasing ICP associated with natural vaginal delivery increases intraorbital pressure, which applies stress to the retina. Associated retinal deformation may cause tearing of the retinal vasculature. Increased pressure within the optic nerve sheath may occlude the central retinal vein, resulting in outflow obstruction and subsequent rupture. Forces accumulated near the optic disk, likely accounting for the tendency of neonatal retinal hemorrhage to occur posteriorly.


Assuntos
Disco Óptico , Hemorragia Retiniana , Feminino , Humanos , Recém-Nascido , Hemorragia Retiniana/diagnóstico , Hemorragia Retiniana/etiologia , Disco Óptico/fisiologia , Retina , Pressão Intraocular , Vasos Retinianos
11.
J AAPOS ; 27(6): 354-357, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741493

RESUMO

Aplasia of the inferior rectus and inferior oblique muscles is extremely rare. Failure of the normal embryologic development of the inferior mesodermal complex can lead to agenesis of inferior rectus, inferior oblique, and lower sections of the lateral rectus muscles. This rare condition is usually seen in association with craniofacial syndromes or in conjunction with microcornea, microphthalmos, Axenfeld-Rieger syndrome, and coloboma. The usual treatment for this condition is a reverse Knapp procedure to improve the vertical alignment; however, this procedure can lead to complications, such as anterior segment ischemia, undercorrection, and torsional problems. To our knowledge, unilateral inferior rectus and inferior oblique muscle aplasia has not been described previously in a patient with congenital facial nerve palsy and optic nerve hypoplasia. In the present case, the patient was successfully treated with a modified minimally invasive horizontal rectus muscle transposition procedure.


Assuntos
Anormalidades do Olho , Síndrome de Goldenhar , Estrabismo , Humanos , Músculos Oculomotores , Síndrome de Goldenhar/complicações , Síndrome de Goldenhar/cirurgia , Tenotomia/efeitos adversos , Estrabismo/cirurgia , Anormalidades do Olho/complicações , Anormalidades do Olho/cirurgia , Procedimentos Cirúrgicos Oftalmológicos/efeitos adversos
12.
J. optom. (Internet) ; 16(3): 206-213, July - September 2023. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-222229

RESUMO

Purpose Personal mobile devices such as smartphones are proving their usefulness in ever more applications in tele-eyecare. An inconvenience and potential source of error in these past approaches stemmed from the requirement for the subjects to situate their devices at a distance. The present study aims to clinically validate best corrected visual acuity (BCVA) measures carried out by a novel smartphone application “vision.app” (VisionApp Solutions S.L.) using comparative statistics against clinical measurements. Materials and methods BCVA was measured in both eyes of 40 subjects using vision.app which displayed a black Landolt-C optotype with crowding on a white background, and utilized a 4 forced-choice procedure for the subjects to find (by means of swiping in either of four directions) the smallest optotype size they could resolve. Results were compared to BCVA measurements taken using a standard Snellen chart placed at 20 feet (6 m). Results The t-test revealed no significant differences between the app- and clinically-measured VA (p = 0.478 (OD) and 0.608 (OS)), with a mean difference between clinical and app measurements of less than one line of the eye chart (-0.009 logMAR (OD) and -0.005 logMAR (OS)). A limit of agreement for a 95% confidence interval of ± 0.08 logMAR for OD and OS was found. Conclusions The results show the potential use of a smartphone to measure BCVA at a handheld distance. The newly validated study results can hold major future advancements in tele-eyecare and provide eye care professionals with a reliable and accessible method to measure BCVA. (AU)


Assuntos
Humanos , Acuidade Visual , Aplicativos Móveis
14.
J AAPOS ; 27(3): 131.e1-131.e6, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37187408

RESUMO

BACKGROUND: Ocular injury is common in children playing sports. Sports-related eye injuries, if severe enough, can lead to permanent vision impairment. Soccer, the most popular sport in the world, is a sport in which players rarely use protective eyewear. The purpose of this study was to determine how eye injuries are induced by a soccer ball impact and to evaluate whether eye protection influences the effects of impact. METHODS: A finite element (FE) computer simulation was used to simulate soccer ball trauma on a model of the eye with and without eye protection. Protective eyewear of different materials (polycarbonate and acrylic) was modeled to investigate the optimal medium for eye protection. Stress and strain experienced by the eyeball was quantified by the FE computer simulation in each model. RESULTS: Protective eyewear was found to be effective in lowering ocular stress and strain by absorbing and redirecting energy from the ball. Compared to the unprotected eye model, polycarbonate eyewear reduced the average stress the retina experienced by 61%, whereas the acrylic model reduced the average stress by 40%. Polycarbonate and acrylic eyewear also reduced the maximum strain experienced by the retina by 69% and 47%, respectively, reducing the severity of deformations of the eye on impact. CONCLUSIONS: These findings suggest that wearing protective eyewear, especially when made of polycarbonate, can be an effective means of reducing injury-inducing retinal stress. The use of eye protection is thus recommended for pediatric patients participating in soccer.


Assuntos
Traumatismos Oculares , Futebol , Criança , Humanos , Simulação por Computador , Traumatismos Oculares/etiologia , Traumatismos Oculares/prevenção & controle , Retina , Traumatismos em Atletas
15.
J Optom ; 16(3): 206-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36964070

RESUMO

PURPOSE: Personal mobile devices such as smartphones are proving their usefulness in ever more applications in tele-eyecare. An inconvenience and potential source of error in these past approaches stemmed from the requirement for the subjects to situate their devices at a distance. The present study aims to clinically validate best corrected visual acuity (BCVA) measures carried out by a novel smartphone application "vision.app" (VisionApp Solutions S.L.) using comparative statistics against clinical measurements. MATERIALS AND METHODS: BCVA was measured in both eyes of 40 subjects using vision.app which displayed a black Landolt-C optotype with crowding on a white background, and utilized a 4 forced-choice procedure for the subjects to find (by means of swiping in either of four directions) the smallest optotype size they could resolve. Results were compared to BCVA measurements taken using a standard Snellen chart placed at 20 feet (6 m). RESULTS: The t-test revealed no significant differences between the app- and clinically-measured VA (p = 0.478 (OD) and 0.608 (OS)), with a mean difference between clinical and app measurements of less than one line of the eye chart (-0.009 logMAR (OD) and -0.005 logMAR (OS)). A limit of agreement for a 95% confidence interval of ± 0.08 logMAR for OD and OS was found. CONCLUSIONS: The results show the potential use of a smartphone to measure BCVA at a handheld distance. The newly validated study results can hold major future advancements in tele-eyecare and provide eye care professionals with a reliable and accessible method to measure BCVA.


Assuntos
Aplicativos Móveis , Humanos , Smartphone , Acuidade Visual , Testes Visuais/métodos
16.
Clin Ophthalmol ; 16: 4249-4255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36573233

RESUMO

Purpose: To introduce the University of California Irvine (UCI) EyeMobile for Children preschool vision screening program and describe the ophthalmic examination results of children who failed screening with the PlusoptiX S12C photoscreener during one school year. Patients and Methods: Children aged 30-72 months were screened with the PlusoptiX using ROC mode 3 during the 2019-2020 school year. Children who failed screening were referred for comprehensive eye examination on the EyeMobile mobile clinic. Presence of amblyopia risk factors (ARFs), amblyopia, and refractive error was determined via retrospective review of records. Amblyopia was defined as unilateral if there was ≥ 2-line interocular difference in the best-corrected visual acuity (BCVA) and as bilateral if BCVA was < 20/50 for children < 4 years old and < 20/40 for children ≥ 4 years old. ARFs were defined using 2021 American Association for Pediatric Ophthalmology and Strabismus (AAPOS) instrument-based screening guidelines. Results: 5226 children were screened during the study period. Of the 546 children who failed screening, 350 (64%) obtained consent and were examined. Mean age of examined children was 4.45 years. Amblyopia was found in 8% of examined children, with unilateral amblyopia seen in 79% of amblyopic subjects. Glasses were prescribed to 246 (70.3%) children. Of the 240 children who received cycloplegic examinations, 43% had hyperopia and 30% had myopia. The positive predictive value (PPV) of the PlusoptiX screening for ARFs in children who received cycloplegic examinations was 70.4%. Conclusion: A significant proportion of Orange County preschoolers with refractive errors and amblyopia have unmet refractive correction needs. The PlusoptiX S12C photoscreener is an adequate screening device for the UCI EyeMobile for Children program, although modification of device referral criteria may lead to increased PPV. Further research is necessary to understand and overcome the barriers to childhood vision care in our community.

17.
Children (Basel) ; 9(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36553382

RESUMO

Vision is an important aspect of a child's quality of life and intellectual, social, and emotional development. Disruptions to vision during infancy and early childhood can cause lifelong vision impairment or blindness. However, early identification and treatment of eye disease can prevent loss of sight and its consequent long-term effects. Therefore, screening guidelines exist to guide physicians in detecting the most common threats to sight in the different stages of infancy and childhood. This review describes common causes of pediatric vision impairment, the recommended screening guidelines for diagnosing them, and current treatment modalities.

18.
Ophthalmol Sci ; 2(2): 100129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36249696

RESUMO

Purpose: Trauma to the eye resulting from a soccer ball is a common sports-related injury. Although the types of ocular pathologic features that result from impact have been documented, the underlying pathophysiologic mechanics are not as well studied. The purpose of this study was to evaluate the biomechanical events after the collision of a soccer ball with the eye to better understand the pathophysiology of observed ocular and retinal injuries and to compare them with those observed in abusive head trauma (AHT). Design: Computer simulation study. Participants: None. Methods: A finite element model of the eye was used to investigate the effects of a collision of a soccer ball on the eye. Main Outcome Measures: Intraocular pressure and stress. Results: Impact of the soccer ball with the eye generated a pressure wave that traveled through the vitreous, creating transient pockets of high and negative pressure. During the high-frequency phase, pressure in the vitreous near the posterior pole ranged from 39.6 to -30.9 kPa. Stress in ocular tissue was greatest near the point of contact, with a peak of 66.6 kPa. The retina experienced the greatest stress at the vasculature, especially at distal branches, where stress rose to 15.4 kPa. On average, retinal stress was greatest in the subretinal layer, but was highest in the preretinal layer when considering only vascular tissue. Conclusions: The high intraocular pressure and stress in ocular tissue near the point of soccer ball impact suggest that injuries to the anterior segment of the eye can be attributed to direct transmission of force from the ball. The subsequent propagation of a pressure wave may cause injuries to the posterior segment as the positive and negative pressures exert compressive and tractional forces on the retina. The linear movement of the pressure wave likely accounts for localization of retinal lesions to the posterior pole or superior temporal quadrant. The primarily linear force in soccer ball trauma is the probable cause for the more localized injury profile and lower retinal hemorrhage incidence compared with AHT, in which repetitive angular force is also at play.

19.
Diagnostics (Basel) ; 12(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35885436

RESUMO

Soccer-related ocular injuries, especially retinal injuries, have attracted increasing attention. The mechanics of a flying soccer ball have induced abnormally higher retinal stresses and strains, and their correlation with retinal injuries has been characterized using the finite element (FE) method. However, FE simulations demand solid mechanical expertise and extensive computational time, both of which are difficult to adopt in clinical settings. This study proposes a framework that combines FE analysis with a machine learning (ML) approach for the fast prediction of retina mechanics. Different impact scenarios were simulated using the FE method to obtain the von Mises stress map and the maximum principal strain map in the posterior retina. These stress and strain patterns, along with their input parameters, were used to train and test a partial least squares regression (PLSR) model to predict the soccer-induced retina stress and strain in terms of distributions and peak magnitudes. The peak von Mises stress and maximum principal strain prediction errors were 3.03% and 9.94% for the frontal impact and were 9.08% and 16.40% for the diagonal impact, respectively. The average prediction error of von Mises stress and the maximum principal strain were 15.62% and 21.15% for frontal impacts and were 10.77% and 21.78% for diagonal impacts, respectively. This work provides a surrogate model of FE analysis for the fast prediction of the dynamic mechanics of the retina in response to the soccer impact, which could be further utilized for developing a diagnostic tool for soccer-related ocular trauma.

20.
Korean J Ophthalmol ; 36(3): 253-263, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35527527

RESUMO

PURPOSE: Various types of trauma can cause retinal hemorrhages in children, including accidental and nonaccidental head trauma. We used animal eyes and a finite element model of the eye to examine stress patterns produced during purely linear and angular accelerations, along with stresses attained during simulated repetitive shaking of an infant. METHODS: Using sheep and primate eyes, sclerotomy windows were created by removing the sclera, choroid, and retinal pigment epithelium to expose the retina. A nanofiber square was glued to a 5 mm2 area of retina. The square was pulled and separated from vitreous while force was measured. A finite element model of the pediatric eye was used to computationally measure tension stresses during shaking. RESULTS: In both sheep and primate eyes, tension stress required for separation of retina from vitreous range from 1 to 5 kPa. Tension stress generated at the vitreoretinal interface predicted by the computer simulation ranged from 3 to 16 kPa during a cycle of shaking. Linear acceleration generated lower tension stress than angular acceleration. Angular acceleration generated maximal tension stress along the retinal vasculature. Linear acceleration produced more diffuse force distribution centered at the poster pole. CONCLUSIONS: The finite element model predicted that tension stress attained at the retina during forcible shaking of an eye can exceed the minimum threshold needed to produce vitreoretinal separation as measured in animal eyes. Furthermore, the results show that movements that involve significant angular acceleration produce strong stresses localized along the vasculature, whereas linear acceleration produces weaker, more diffuse stress centered towards the posterior pole of the eye.


Assuntos
Traumatismos Craniocerebrais , Hemorragia Retiniana , Animais , Criança , Simulação por Computador , Traumatismos Craniocerebrais/complicações , Análise de Elementos Finitos , Humanos , Retina , Hemorragia Retiniana/diagnóstico , Hemorragia Retiniana/etiologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...